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Introduction

Across languages, more frequent lexical items diverge more from the grammar:
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Introduction

Across languages, more frequent lexical items diverge more from the grammar.

Today: Modeling divergence from gradient phonology

m Representational Strength Theory
Gradient memory strength for properties of lexical items

m The Gradient Lexicon and Phonology Learner (GLaPL)

Integrates learning of lexicon and probabilistic phonology

(Phonology affects lexical storage: predictable properties not stored)
Frequency affects lexical storage: exposure - more detailed representations
Over time, detailed representations = exceptions



Frequency and exceptionality

Higher frequency - More idiosyncratic

English Comparative: words vary between more and -er

happier ~ more happy
bigger ~ ?? more big

More frequent = more categorical
Less frequent > grammar determines output

monoyllables > -er
final r/1 > more

Boyd, 2012; Smith and Moore-Cantwell, 2017
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Frequency and exceptionality

Higher frequency - More idiosyncratic

Judgments (Expt 1), attested
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Frequency and exceptionality

Higher frequency - More idiosyncratic

English Binomial Expressions: conjuncts vary in order

lemons and cucumbers ~ cucmbers and lemons
bread and butter ~ ?? butter and bread

shorter first
more powerful first
(bishops and priests)

Morgan & Levy, 2015, 2016
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Frequency and exceptionality

Higher frequency - More idiosyncratic

Figure 14. Log frequency and percent SPPs present
80
Subject Pronouns in Spanish: Subject pronouns are = .
optional o
2 607
=5 ° ¢
Hablo ~ Yo hablo 2 .
Digo ~ ?? Yo digo = .
= 407 °® ° ¢ o« °
R @ TTTTmmmmmmmseseseese. '.'.' ----------------------------------
Tense-Mood-Aspect e: ° . ® o
Switch Reference § 20- . ** ° .
P oe® o
g : .
| [ J
Erker & Guy, 2012 0 . . | | | .
.0 S 1.0 1.5 2.0 2.5
Log Frequency




Frequency and exceptionality

Higher frequency - More idiosyncratic

In patterns of within-item variation:

Higher frequency forms:

m Diverge from the predictions of the variable
grammar

m Exhibit more extreme behavior, varying less
as an item than their low-frequency
counterparts

Experience - autonomy from the grammar, consistency

Figure 14. Log frequency and percent SPPs present
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Frequency and exceptionality

Higher frequency - More idiosyncratic

MaxEnt grammar model

+ learning/representation of words’ features
Representational Strength Theory

+ learning algorithm for both

Gradient Lexicon and Phonology Learner (GLaPL)

Iterated learning (output of learning is input to next “generation”)

- High-frequency items in variable patterns become extreme



Modeling probabilistic generalizations

Constraints conflict, and determine a probability distribution over output candidates

p H OCP-LIQ O-ER
1.4 1
foul + Comp MAXIMUM ENTROPY GRAMMAR
(Goldwater and Johnson, 2003)
- more foul 0.59 -1 | 1
> fouler 041 |-14 | 1
g_[ eH Predicts int ker variati
— _Z W, % Vi p = redicts intra-speaker variation
y eg-[ For a given speaker, p is the probability

that they will produce that output on any
given utterance of the input word.

“ﬂ-[armony”
(Smolensky and Legendre, 2006; Pater, 2016) 10




Adding in word knowledge

What to do with higher-frequency words that don’t follow the grammar?

H

p OCP-LIQ O-ER
1.4 1
small + Comp
X = moresmall 0.59 | -1 | 1
99.6% v >  smaller 041 |-14 | 1

I Speakers must memorize the behavior of words like small + Comp

11



Adding in word knowledge

Proposal: Representational Strength Theory (compare: Direct OT Golston, 1996)

Phonological Form Constraints (PFC’s)

-er — SMALL: Assign a violation to any output form for the input SMALL which also contains a
+ CoMP, and does not use the suffix —er to express it

p H -er OCP-LIQ O-ER
5.4 1.4 1
SMALL + CompP
more small 0 -6.4 | 1 1
> smaller 099 | -14 | 1

(SmaLL 5.4 1st segment sibilant )
7.2 2" segment labial
6.7 31 segment low

7.9 31 segment voiced

12




No Underlying Form!
No Faithfulness constraints

Adding in word knowledge

Phonological Form Constraints

Proposal: Representational Strength Theory

Pos1 osl Pos2 Pos3 Pos3
-er +S| T | +CORONAL +NASAL +ALVEOLAR +VOICE
5.4 6.2 5.8 7.4 2.5 0.7
SMALL + —
maJ smal 1 PFC’s are the phonological part of the lexical entry
(compare: Direct OT Golston, 1996)
tmale- 1
fmale- 1 Gradient weight ~ gradient memory resource allocation
spale- 1
smelo- 1
smale- 1
smal® 1
poJ smal 1 1
- smaloe-
13




Markedness can overcome PFCs

Proposal: Representational Strength Theory  w/ Phonological Form Constraints

P H 5 Pos4 | Pos4 | | Posl
*Viv +stop | +cor +high
10 5 10 8
GREET + PROG
2> gririn 099 | -5 | | 1
gritin 10 | 1 |
gripin -10 | | 1
griran 13 | | 1 1

I Next: Learning weights of Markednes and PFC’s...




Learning probabilistic generalizations

Error Driven Learning (Boersma and Hayes, 2001; Rosenblatt, 1958)

Guess values for :
constraint weights Adjust ‘guess

mismatch .
(error) Starting guess:

All weights zero

Check prediction

Use guess to predict against Each learning step:
ouput for a word observed output Sample a word based
Learns one word at a time on frequency

match

Do nothing

15



Learning probabilistic generalizations

Error Driven Learning (Boersma and Hayes, 2001; Rosenblatt, 1958)

Sample t: smaller

Use current state of grammar to predict correct output: OCP-LIqQ favors the
incorrect outcome
p H OCP-LIQ O-ER f decrease
1.4 1
SMALL + Comp o-ER favors the correct
moresmall 0.59 | -1 | 1 outcome
randomly sample: Increase
smaller 0.41 | -1.4 | 1
Weights only change a
more small | Does not match Update little at a time

—

observed pronunciation! weights Aw =0.01

16




Learning probabilistic generalizations

Error Driven Learning (Boersma and Hayes, 2001; Rosenblatt, 1958)
Sample t: smaller
Use current state of grammar to predict correct output:

p H OCP-LIQ
1.39

OCP-LIQ favors the
f incorrect outcome

O-ER
decrease

1.01

SMALL + ComMP
more small 0.58 | -1.01 |

randomly sample:
smaller 0.42 | -1.39 | 1

more small Does not match Update

—

observed pronunciation! weights

0-ER favors the correct
1 outcome
increase

Weights only change a
little at a time

Aw = 0.01

17



Adding in word learning
The Gradient Lexicon and Phonology Learner (GLaPL)

Error Driven Learning (Boersma and Hayes, 2001; Rosenblatt, 1958) AdeSt weights
Induce a Phonological Form Constraint
Guess values for starting weight: 10

constraint weights

mismatch
(error)

Check prediction
Decay PFC weights > against

Use guess to predict observed output
ouput for a word

Learns one word at a time v\ match

Do nothing

18



Learning probabilistic generalizations

Error Driven Learning (Boersma and Hayes, 2001; Rosenblatt, 1958)
Sample t: smaller

Use current state of grammar to predict correct output:

b H er OCP-LIQ G-ER f
10 1.39 1.01
SMALL + ComP
more small 0O |-11.01 | 1 1
randomly sample: smaller 0.99 | -1.39 | 1
D not match weigh
more small ot?:jrvgél ps)tr?unciation! R Il:f:jotljacl:tee Pheoioﬁzgical Form Constraint




Decay

m Phonological Form Constraints (PFC’s) = memory for correct pronounciation of the word

m Elements of declarative memory decay over time (Hintzmann, 1984; Brady et al., 2013)
- All PFC’s decay at the same rate (104)
- Decay to zero =2 removed from consideration
But could be added back later

20
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Frequency and exceptionality
Gradient Lexicon and Phonology Learner (GLaPL)

Fewer, lower weighted PFC’s on low-frequency words
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Frequency and exceptionality
Gradient Lexicon and Phonology Learner (GLaPL)

Training data:

« Comparatives in COCA: 4600 adjectives, 1.1 million instances
(Smith and Moore-Cantwell, 2017)

Constraints:
* One for each phonological conditioning factor
(Word length, final I/r, stress pattern...)

Parameters: (summary)

5 million learning iterations

Markedness constraints updated by learning rate: 0.01
PFC starting weight: 10

PFC learning rate: 0.1

PFC decay rate: 0.0001

23



1.0

COCA

(observed probabilities)

P(er)

00 02 04 06 08

Log Frequency
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GLaPL: Exceptionality over ;

Starting state 1000 toy words: All 50% more, 50% -er

Words’ frequencies in Zipfian distribution (like natu

generations

ral languages)

Each generation learns, then final state becomes input to next generation (iterated learning)

Language
Data

Suluiea

_—

Suiuiea

Griffiths and Kalish, 2007
Kirby et al 2014,

- — D
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GLaPL: Exceptionality over generations

1000 toy words: All 50% more, 50% -er

Two (relatively dumb) markedness constraints: BE more, BE -er
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Generation 1 Generation 2 Generation 3
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Generation 1 Generation 2 Generation 3
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Consistency across runs

%o 00 0%, % o9,0°° %0 e og(f)>5
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Simulation

Generation 20: Highest density
point is always close to 1 or O for
high-frequency words, and
always middling for low-
frequency words

All runs get the basic pattern:
high-frequency words are
idiosyncratic, while low-
frequency words vary according
to the grammar



Conclusions

Frequency is tied to divergence from the Phonological Grammar:

This model (GLaPL) uses:
Maximum Entropy Grammar model of phonology
Error-driven learning algorithm

Phonological Form Constraints: induced on error, and decay over time

m Frequency affects lexical storage: exposure = more detailed representations

m Over time, detailed representations = exceptions

31



Thank you!

github.com/clairemoorecantwell/GLaPL
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Morphological Composition

with Representational Strength Theory p

Pos1l | Pos2
*[vol][+vol] | -voice | +high
[ \ 10 62 | 31
PERSON PEOPLE + PL
— :
. <> pipl 099 | 0.2
Pos1: -voice 8 : o | 93 1 1
_ composed version prsnz s
Pos1.: +St0p 6.2 prsns 0 -13.1 1 1

Pos2: +voice 3.1

Pos3: +sibilant 7.7
Pos3: -voice 6

Initial stress 10
e )

f

stored version

GERSON PL (people)\

Pos1: -voice 8
Pos1: +stop 6.2
PL Pos2: +high 7.9

Pos1: -voice 8 Pos3: +stop 7.7
Pos1: +sibilant 6.2 Pos4: -lateral 6

Pos1: +cont 3.1 Initial stress 10
k EEN ) k EEE / 33

Choose between
the stored version
and the composed
version however
you want.




Markedness can overcome PFCs

p H . Pos4 | Pos4 Pos1
*Viv +stop | +cor +high
10 5 10 8
GREET + PROG
2> gririn 099 | -5 | | 1
sritzn 10 | 1|
gripin -10 | | 1
griran 13 | | 1 1
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