EMERGENCE OF LEXICAL IDIOSYNCRASY IN LANGUAGE CHANGE:

An iterated learning simulation

Claire Moore-Cantwell Simon Fraser University

Introduction

Across languages, more frequent lexical items diverge more from the grammar:

Introduction

Across languages, more frequent lexical items diverge more from the grammar.

Today: Modeling divergence from gradient phonology

Representational Strength Theory

Gradient memory strength for properties of lexical items

- The Gradient Lexicon and Phonology Learner (GLaPL)
 - Integrates learning of lexicon and probabilistic phonology
 - (Phonology affects lexical storage: predictable properties not stored)
 - Frequency affects lexical storage: exposure \rightarrow more detailed representations
 - Over time, detailed representations \rightarrow exceptions

Frequency and exceptionality Higher frequency \rightarrow More idiosyncratic

English Comparative: words vary between more and -er

happier ~ more happy
bigger ~ ?? more big

More frequent \rightarrow more categorical Less frequent \rightarrow grammar determines output

monoyllables $\rightarrow -er$ final r/l \rightarrow more

Boyd, 2012; Smith and Moore-Cantwell, 2017

Frequency and exceptionality Higher frequency \rightarrow More idiosyncratic

English Binomial Expressions: conjuncts vary in order

lemons and cucumbers ~ cucmbers and lemons bread and butter ~ ?? butter and bread

shorter first
more powerful first
 (bishops and priests)

Morgan & Levy, 2015, 2016

Frequency and exceptionality Higher frequency \rightarrow More idiosyncratic

English Binomial Expressions: conjuncts vary in order

lemons and cucumbers ~ cucmbers and lemons bread and butter ~ ?? butter and bread

shorter first
more powerful first
 (bishops and priests)

Morgan & Levy, 2015, 2016

Frequency and exceptionality Higher frequency \rightarrow More idiosyncratic

Subject Pronouns in Spanish: Subject pronouns are optional

Hablo ~ Yo hablo Digo ~ ?? Yo digo

> Tense-Mood-Aspect Switch Reference

Erker & Guy, 2012

. . .

Frequency and exceptionality Higher frequency \rightarrow More idiosyncratic

In patterns of within-item variation:

Higher frequency forms:

- Diverge from the predictions of the variable grammar
- Exhibit more extreme behavior, varying less as an item than their low-frequency counterparts

Experience \rightarrow autonomy from the grammar, consistency

Frequency and exceptionality Higher frequency \rightarrow More idiosyncratic

MaxEnt grammar model

+ learning/representation of words' features

Representational Strength Theory

+ learning algorithm for both

Gradient Lexicon and Phonology Learner (GLaPL)

Iterated learning (output of learning is input to next "generation")

 \rightarrow High-frequency items in variable patterns become extreme

Modeling probabilistic generalizations

Constraints conflict, and determine a probability distribution over output candidates

	р	H	OCP-LIQ 1.4	σ-ER 1
foul + Comp				
\rightarrow more foul	0.59	-1		1
→ fouler	0.41	-1.4	1	

MAXIMUM ENTROPY GRAMMAR (Goldwater and Johnson, 2003)

Predicts intra-speaker variation For a given speaker, **p** is the probability that they will produce that output on any given utterance of the input word.

"Harmony" (Smolensky and Legendre, 2006; Pater, 2016)

 $\mathcal{H} = -\sum W_i * Vi$

Adding in word knowledge

What to do with higher-frequency words that don't follow the grammar?

					р	H	OCP-LIQ 1.4	σ-ER 1
	sm	nall +	Сомр					
		Х	\rightarrow n	nore small	0.59	-1		1
99.6	5%	\checkmark	\rightarrow	smaller	0.41	-1.4	1	

Speakers must memorize the behavior of words like *small* + *COMP*

Adding in word knowledge

Proposal: Representational Strength Theory (compare: Direct OT Golston, 1996)

Phonological Form Constraints (PFC's)

-er – SMALL: Assign a violation to any output form for the input SMALL which also contains a + Сомр, and does not use the suffix –er to express it

Adding in word knowledge

Proposal: Representational Strength Theory *w*/Phonological Form Constraints

	-er 5.4	Pos1 +sibilant 6.2	Pos1 +coronal 5.8	Pos2 +NASAL 7.4	Pos3 +alveolar 2.5	Pos3 +voice 0.7	Pos1 +RHOTIC 7.2	Pos1 +NASAL 5.6					
SMALL + COMP ~													
m ɔ ɹ smal	1			PFC's are the phonological part of the lexical entry									
tmal ə -		1		(compare: Direct OT Golston, 1996)									
∫ mal ə -			1	Gradient weight ~ gradient memory resource allocation									
spal ə -				1									
smɛlə-					1								
smạl ə -						1							
smalə							1						
p ɔ ɹ smal	1							1					
→ smalæ								13					

Markedness can overcome PFCs

Proposal: Representational Strength Theory

w/ Phonological Form Constraints

	р	Н	*ÝtЎ 10	Pos4 +stop 5	Pos4 +cor 10	 Pos1 +high 8	
GREET + PROG							
→ grí rı ŋ	0.99	-5		1			
grít ı ŋ	0	-10	1				
grípiŋ	0	-10			1		
grí rə ŋ	0	-13		1		1	

Next: Learning weights of Markednes and PFC's...

Error Driven Learning (Boersma and Hayes, 2001; Rosenblatt, 1958)

Error Driven Learning (Boersma and Hayes, 2001; Rosenblatt, 1958)

Sample *t*: smaller

Use current state of grammar to predict correct output:

OCP-LIQ favors the incorrect outcome decrease

 σ-ER favors the correct outcome increase

Weights only change a little at a time $\Delta w = 0.01$

Error Driven Learning (Boersma and Hayes, 2001; Rosenblatt, 1958)

Sample *t*: smaller

Use current state of grammar to predict correct output:

OCP-LIQ favors the

Adding in word learning The Gradient Lexicon and Phonology Learner (GLaPL)

Error Driven Learning (Boersma and Hayes, 2001; Rosenblatt, 1958)

Sample *t*: smaller

Use current state of grammar to predict correct output:

Decay

- Phonological Form Constraints (PFC's) = memory for correct pronounciation of the word
- Elements of declarative memory decay over time (Hintzmann, 1984; Brady et al., 2013)
 - All PFC's decay at the same rate (10^{-4})
 - Decay to zero → removed from consideration
 But could be added back later

Frequency and exceptionality Gradient Lexicon and Phonology Learner (GLaPL)

iteration (hundred thousands)

21

Frequency and exceptionality Gradient Lexicon and Phonology Learner (GLaPL)

Fewer, lower weighted PFC's on low-frequency words

Frequency and exceptionality Gradient Lexicon and Phonology Learner (GLaPL)

Training data:

 Comparatives in COCA: 4600 adjectives, 1.1 million instances (Smith and Moore-Cantwell, 2017)

Constraints:

One for each phonological conditioning factor
 (Word length, final l/r, stress pattern...)

Parameters: (summary) 5 million learning iterations Markedness constraints updated by learning rate: 0.01 PFC starting weight: 10 PFC learning rate: 0.1 PFC decay rate: 0.0001

COCA (observed probabilities)

COCA (observed probabilities)

GLaPL (predicted probabilities)

Higher frequency \rightarrow More idiosyncratic

Lower frequency \rightarrow Reliance on grammar

GLaPL: Exceptionality over generations

Starting state 1000 toy words: All 50% more, 50% -er

Words' frequencies in Zipfian distribution (like natural languages)

Each generation learns, then final state becomes input to next generation (*iterated learning*)

GLaPL: Exceptionality over generations

Starting state 1000 toy words: All 50% more, 50% -er

Two (relatively dumb) markedness constraints: BE more, BE -er

Parameters: (summary) 500,000 learning iterations Markedness constraints updated by learning rate: 0.01 PFC starting weight: 10 PFC learning rate: 0.1 PFC decay rate: 0.0001

log(f)

Consistency across runs

Generation 20: Highest density point is always close to 1 or 0 for high-frequency words, and always middling for lowfrequency words

All runs get the basic pattern: high-frequency words are idiosyncratic, while lowfrequency words vary according to the grammar

Simulation

Conclusions

Frequency is tied to divergence from the Phonological Grammar:

This model (GLaPL) uses:

Maximum Entropy Grammar model of phonology

Error-driven learning algorithm

Phonological Form Constraints: induced on error, and decay over time

- Frequency affects lexical storage: exposure \rightarrow more detailed representations
- Over time, detailed representations \rightarrow exceptions

Thank you!

github.com/clairemoorecantwell/GLaPL

Morphological Composition with Representational Strength Theory

Markedness can overcome PFCs

	р	Н	*ÝtŬ 10	Pos4 +stop 5	Pos4 +cor 10	 Pos1 +high 8	
GREET + PROG							
→ grírīŋ	0.99	-5		1			
grít ı ŋ	0	-10	1				
grípiŋ	0	-10			1		
grí r əŋ	0	-13		1		1	

GLaPL trying to learn crazy data

GLaPL trying to learn crazy data

French schwa alternations

French Schwa alternations

semaine ~ smaine semetre ~ smestre

Data from Racine, 2007

12 Native speakers rated 2189 nouns with and without schwa